

CryptoHeat: A Smart, Cost-Efficient Personal Heater Powered by Blockchain Mining

College of Computing

Lucas A. Raicu ¹ Ioan Raicu ²

¹Glenbrook South High School ²Illinois Institute of Technology

ABSTRACT

This project presents CryptoHeat, a system that repurposes mining-generated heat for personal space heating. By combining remote temperature monitoring with a GPU-based cryptocurrency mining platform, CryptoHeat transforms a single-use energy expense into a dualpurpose, cost-conscious system. The platform integrates consumer-grade hardware with control logic to maintain indoor comfort while supporting ongoing blockchain computations.

BACKGROUND

- Blockchain is a decentralized digital ledger where transactions are verified and stored across a distributed network [1]
- Cryptocurrency mining validates blockchain transactions by solving cryptographic
- GPUs can be used to perform these operations at high speed, measured in hashrate (MH/s)
- Mining consumes large amounts of electricity and generates waste heat as a byproduct [2, 3], which is typically expelled and wasted through cooling systems

CRYPTOHEAT APPROACH

HARDWARE/SOFTWARE Description Component Raspberry Pi 4 (2GB RAM) Controller STS35 digital temperature sensor Sensor 1Gb/s Ethernet switch with CAT6 RJ45 cables Network Appliance #1 4× NVIDIA A2000 GPUs 2× NVIDIA A2000 + 1× 3080 Ti GPU Appliance #2 Appliance #3 2× NVIDIA 3080 Ti GPUs Approx. \$3600 total (compute, sensors, and network-System Cost ing, used pricing from eBay)

Notes Range Description 200W - 900W 1.6A - 7.5A @ 120V Power Consumption Noise Level 36 dBA - 42 dBA Suitable for indoor use Monthly Power Cost \$23 - \$104 Based on \$0.16/kWh Monthly Mining Income \$0 - \$50 Up to 0.06 ERG/hr \$21 - \$50 Net Monthly Cost Heating offset via mining

682 - 3070 BTU/hr Comparable to room heaters

over 24-Hour Period

CHALLENGES

We have identified six main challenges in developing this cost-efficient heating system.

Hardware costs limits usage to retired computers (or purchased used off eBay)

Heat Output

- Relatively high power consumption when idle (solvable through IPMI-enabled) motherboard)
- Occasional temperature Sensor or API failures due to web-scraping and throttling issues (required additional data cleaning)
- Limited profit estimation accuracy due to variable electricity rates, fluctuating coin prices, and ever changing system-wide hash rates
- Identifying coins with favorable power-to-noise efficiency; quiet operation limits power consumption, limiting heat generation and limiting potential revenue generation

CONCLUSION

REFERENCES

- [1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org White Paper, 2008.
- [2] Alex de Vries. Cryptocurrency mining and its energy footprint. Joule, 8(1):1-9, 2024.
- [3] Wei Li, Yong Zhang, and Jun Chen. Waste heat recovery from cloud data centers: Techniques and research trends. Energy, 101:561-569, 2016.
- [4] Alexander Chepurnoy, Dmitry Meshkov, and Dmitry Oskolkov. Ergo: A resilient platform for contractual money. Ergo Platform White Paper, 2021.