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ABSTRACT

Accurate forecasting of water levels is essential for flood mitigation.
Traditionally, predictions have been based on harmonic analysis
and sensor networks maintained by the National Oceanographic
and Atmospheric Administration. However, these methods strug-
gle with high-variance events that change water levels from the
long-term tidal baseline. TidalMark evaluates the ability of a vari-
ety of deep learning models to model these high-variance events.
Through extensive hyperparameter sweeps and comparisons across
model variants, we have evaluated tradeoffs in accuracy, generaliza-
tion, and scalability. Our results show that properly tuned machine
learning models consistently outperform the scientific-standard har-
monic approaches between 2.1X and 4.7X (between one to seven
day predictions) with the goal towards achieving adaptive, scalable,
and accurate forecasting of coastal water levels.
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1 INTRODUCTION

Coastal communities face increasing threats from flooding, sea-level
rise, and extreme weather [5]. Since the 1800s, harmonic analysis
has been used to predict water levels by decomposing tides into
cyclical components [1, 3]. The National Oceanographic and Atmo-
spheric Administration (NOAA) [2] maintains hundreds of sensors
that measure coastal water levels and use harmonic analysis to
predict future water levels. While effective under stable conditions,
harmonic analysis assumes linearity and stationarity, limiting ac-
curacy during environmental variability. Figure 1 shows the water
level during a major weather system over the course of several days
that produced flooding water levels (red line). Unfortunately, both
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NOAA predictions and Forecast Guidance severely underestimated
the water level.
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Figure 1: NOAA’s largest prediction error for the Nawiliwili
station in 2024

NOAA determines harmonic constituents by collecting and ana-
lyzing more than 21 years of continuous station data, extracting the
tidal frequencies, amplitudes, and phases through long-term statis-
tical averaging. In reality, coastal systems exhibit non-stationary
behavior (e.g., long-term sea-level change) and nonlinear weather
interactions (e.g., storm surge), which harmonic analysis cannot
adapt to dynamically.

We propose to develop TidalMark, a benchmark that applies deep
learning models to improve forecast accuracy in coastal water-level
prediction. Our main contribution is comparison of cutting-edge
water level prediction models on a novel dataset.

2 WATER LEVEL

Our dataset originates from NOAA’s National Water Level Obser-
vation Network (NWLON), spanning 217 stations. Over a five-year
period from 2019-2024 the dataset has over 127 million measure-
ments, each taken at six-minute intervals. Our results focus on the
station in Nawiliwili, HI (Station ID: 1611400) due to the data being
complete with no missing samples, see Figure 2a).
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Figure 2: Target station and dataset coverage

We developed a modular pipeline in PyTorch for training and
evaluating water-level forecasting models. Each model receives a
fixed-length window of prior water levels (7 or 14 days) as input and
predicts future water levels at multiple time horizons (1, 3, 5, and
7 days). To understand the importance of exogenous variables in
accurate water level forecasting, we examined both univariate and
multivariate models. We tested standard Long-Short Term Mem-
ory (LSTM) models, bidirectional LSTMs (BiLSTM), convolutional
LSTMs (Conv-LSTM), attention-based LSTMs (Attn-LSTM), as well
as single and stacked gated recurrent units (GRUs). See Table 1 for
hyperparameter grid search values.

Table 1: Hyperparameter grid for univariate model sweep.

Parameter Values Tested

Sequence Length 7, 14

Batch Size 32, 64, 128, 256, 512
Learning Rate 1X10_3, lx10_4, 1x1073
Hidden Size 32, 64

Number of Layers 1, 2

3 PERFORMANCE EVALUATION

Despite the theoretical advantages of BILSTM, GRUs, and Attention-
based LSTMs, we did not observe a significant improvement over
standard LSTM models (see Table 2). Performance distributions
largely overlapped, suggesting that careful tuning matters more
than exotic architecture selection.

Table 2: Forecast performance across architectures

Model Seq.Len BatchSize LR  Hidden Size Layers MSE MAE MaxAE
ATTN-LSTM 7 32 0.001 64 1 0.0033  0.0441  0.3085
BiLSTM 7 32 0.001 32 1 0.0029  0.0409  0.2758
Conv-LSTM 7 64 0.001 32 1 0.0028  0.0400  0.2556
GRU 7 64 0.0001 64 2 0.0028 0.0402  0.2709
LSTM 7 128 0.0005 32 1 0.0028  0.0400  0.3423

For the hyperparamter sweep, we found learning rate to be the
dominant factor. Models trained with 1 X 1073 converged fastest
and achieved the highest R?, outperforming lower values by a wide
margin. Batch size and number of layers had modest effects. Smaller
batches (32-64) improved stability and generalization. One or two
layers offered comparable results.

Longer sequences (14 vs. 7) slightly improved accuracy but at a
significant training time increase. Models tuned for one sequence
length also did not generalize well for other sequence lengths.
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Figure 3: LSTM vs NOAA prediction errors (Nawiliwili station,
2024). LSTM errors provided at 1, 3, 5, and 7 day horizons.

Our best configuration for the LSTM had 1-layer, input sequence
of 14-days, 64 batch size, 32 hidden size, and 1x1073 learning rate.
Our results show that properly tuned machine learning models
outperform the scientific standard harmonics (2.1X with 7 day
horizon or 4.7X with 1 day horizon). Figure 3 shows the histogram
of all predictions using the LSTM compared to NOAA’s predictions,
showing the error in meters. These findings align with broader
trends in Earth system modeling, where deep learning methods are
increasingly surpassing classical statistical and physical models in
accuracy and adaptability [4].

4 CONCLUSION AND FUTURE WORK

TidalMark demonstrates that well-tuned deep learning architec-
tures can outperform traditional harmonic-based forecasts in dy-
namic environments. Our results show that properly tuned machine
learning models outperform state-of-the-art approaches by 4.7X.
We plan to extend TidalMark into a full spatiotemporal Graph Neu-
ral Network framework, where each station is a node and edges
represent geophysical relationships. Beyond methodological ad-
vances, we plan to integrate TidalMark into real-time early flood
detection and coastal management systems.
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