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Abstract

Accurate forecasting of water levels is essential for flood mitigation. Traditionally, predictions have been based on

harmonic analysis and sensor networks maintained by the National Oceanographic and Atmospheric Administration.

However, these methods struggle with high-variance events. TidalMark evaluates deep learning models on coastal

water-level forecasting. Our results show that tuned models consistently outperform harmonic approaches between

2.1X and 4.7X (between 7 day to 1 day predictions), enabling adaptive, scalable, and more accurate forecasts.

Harmonic Analysis

NOAA [4] derives constituents from >21 years of continuous data: frequencies, amplitudes, phases via long-term

averaging [5, 7]

Assumes linear superposition of tides and quasi-stationarity

Effective under stable conditions, but not designed for dynamic forcing (e.g. storms)

Motivation

Challenge [1, 6] Impact

Rising flood risk Infrastructure damage, safety risks

Harmonic limits Miss storm surges, regime shifts

Need adaptivity Capture aperiodic + periodic patterns

Figure 1. Nawiliwili (2024): observed levels severely exceeded harmonic-based guidance during a major weather system.

Dataset

Source: NOAA National Water Level Observation Network (NWLON) [4, 3]

Coverage: 217 stations (U.S.), 2019–2024, 6-minute sampling; >127M measurements

Focus station for results: Nawiliwili, HI (Station ID: 1611400) due to completeness

(a) Target station (Nawiliwili) (b) U.S. station coverage

Figure 2. Dataset scope and focal site

ProposedWork

We developed a modular pipeline in PyTorch with a Long Short-Term Memory (LSTM) [2] neural network for training

and evaluating water-level forecasting models. Each model receives a fixed-length window of prior water levels (7 or

14 days) as input and predicts future water levels at multiple time horizons (1, 3, 5, and 7 days). To understand the

importance of exogenous variables in accurate water level forecasting, we examined univariate models at first.

Hyperparameter Sweep

Model Type Variants Tested Parameter Ranges

LSTM Vanilla, BiLSTM Hidden sizes: 32, 64

Conv-LSTM 1D convolution Learning rates: 1e-3, 5e-4, 1e-4, 1e-5

GRU Single, stacked Layers: 1, 2

Attention-LSTM Scaled dot-product Batch sizes: 32, 64, 128, 256, 512

We also extended the LSTM input space to include additional sources of temporal information (neighboring station

water levels, NOAA tidal predictions, all 37 harmonic constituents) to determine whether richer inputs improve model

performance.

(a) Learning rate vs RMSE (b) Batch size vs RMSE

(c) LR dominates; small/medium batches stable;

14d windows help but cost more

(d)MSE distribution across architectures

(e) Best Univariate LSTM – MaxAE: 0.241 (f)Multivariate w/ Neighbor – MaxAE: 0.445

Figure 3. Absolute Error Histograms for Best LSTM vs Multivariate with Neighbor.

Best LSTM Models vs NOAA Predictions

Figure 4. LSTM vs NOAA errors (Nawiliwili, 2024) at 1/3/5/7-day horizons. Best LSTM: seq 14, hs64, lr 0.001, lay1, bs32

Challenges

Non-stationarity: Regimes shift → retraining & drift monitoring

Overfitting: Multivariate LSTMs overloaded → regularization & feature selection

Data Quality: NOAA gaps/outliers → QC & gap filling

Compute Costs: Long training times → GPU accel., pruning, early stopping

Conclusion

Tuning discipline > architecture novelty

LSTM models outperform harmonic forecasts in

dynamic coastal environments

Performance gain: LSTMs achieve 2.1x–4.7x better

accuracy than harmonic methods, depending on

forecast horizon (7-day to 1-day)

Broader trend: Supports evidence that deep learning

is surpassing classical statistical and physical models

in Earth system modeling

FutureWork

Spatiotemporal GNNs: Joint temporal + station

dependencies

Auto HPO: Bayesian / PBT search for accuracy vs.

cost

Feature Fusion: Weather + harmonic + attention &

uncertainty

Deployment: Edge-based early warning for coastal

resilience
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