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Abstract

Accurate forecasting of water levels is essential for flood mitigation. Traditionally, predictions have been based on

harmonic analysis and sensor networks maintained by the National Oceanographic and Atmospheric Administration.

However, these methods struggle with high-variance events. TidalMark evaluates deep learning models on coastal
water-level forecasting. Our results show that tuned models consistently outperform harmonic approaches between
2.1X and 4.7X (between 7 day to 1 day predictions), enabling adaptive, scalable, and more accurate forecasts.

Harmonic Analysis

= NOAA [4] derives constituents from >21 years of continuous data: frequencies, amplitudes, phases via long-term
averaging [5, 7]

= Assumes linear superposition of tides and quasi-stationarity
= Effective under stable conditions, but not designed for dynamic forcing (e.g. storms)
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Figure 1. Nawiliwili (2024): observed levels severely exceeded harmonic-based guidance during a major weather system.

Dataset

= Source: NOAA National Water Level Observation Network (NWLON) [4, 3]
= Coverage: 217 stations (U.S.), 2019-2024, 6-minute sampling; >127M measurements
= Focus station for results: Nawiliwili, HI (Station ID: 1611400) due to completeness
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Proposed Work

We developed a modular pipeline in PyTorch with a Long Short-Term Memory (LSTM) [2] neural network for training
and evaluating water-level forecasting models. Each model receives a fixed-length window of prior water levels (7 or
14 days) as input and predicts future water levels at multiple time horizons (1, 3, 5, and 7 days). To understand the
Importance of exogenous variables in accurate water level forecasting, we examined univariate models at first.

Hyperparameter Sweep

Model Type Variants Tested Parameter Ranges

LSTM Vanilla, BILSTM Hidden sizes: 32, 64

Conv-LSTM 1D convolution Learning rates: 1e-3, 5e-4, 1e-4, 1e-5
GRU Single, stacked Layers: 1, 2

Attention-LSTM Scaled dot-product Batch sizes: 32, 64, 128, 256, 512

We also extended the LSTM input space to include additional sources of temporal information (neighboring station
water levels, NOAA tidal predictions, all 37 harmonic constituents) to determine whether richer inputs improve model
performance.
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14d windows help but cost more
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(e) Best Univariate LSTM - MaxAE: 0.241 (f) Multivariate w/ Neighbor — MaxAE: 0.445
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Figure 4. LSTM vs NOAA errors (Nawiliwili, 2024) at 1/3/5/7-day horizons. Best LSTM: seq 14, hsé4, Ir 0.001, lay1, bs32

Challenges

Non-stationarity: Regimes shift — retraining & drift monitoring

Overfitting: Multivariate LSTMs overloaded — regularization & feature selection
Data Quality: NOAA gaps/outliers — QC & gap filling

Compute Costs: Long training times — GPU accel., pruning, early stopping

Conclusion Future Work
Tuning discipline > architecture novelty = Spatiotemporal GNNs: Joint temporal + station
LSTM models outperform harmonic forecasts in dependencies
dynamic coastal environments = Auto HPO: Bayesian / PBT search for accuracy vs.
Performance gain: LSTMs achieve 2.1x-4.7x better cost
accuracy than harmonic methods, depending on = Feature Fusion: Weather + harmonic + attention &
forecast horizon (7-day to 1-day) uncertainty

Broader trend: Supports evidence that deep learning = Deployment: Edge-based early warning for coastal
IS surpassing classical statistical and physical models resilience
in Earth system modeling
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