

TidalMark: AI-Driven Forecasts for Next-Gen Water Level Monitoring

Lucas Raicu

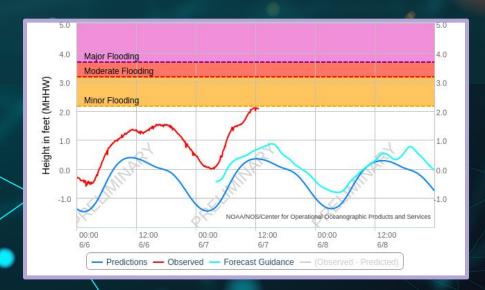
Advisors: Daniel Grzenda, Prof. Kyle Chard

August 5th, 2025

About me

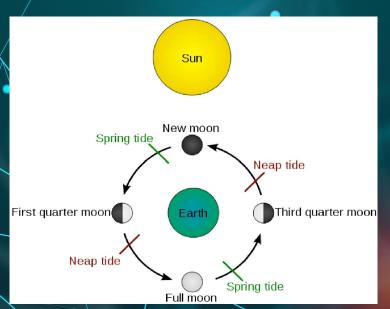
- Rising Senior at Glenbrook South High School (GBS)
- Coursework
 - Honors CS and AP CS A
 - Fundamentals of AI through Oakton College
- Founder of <u>CS Honor Society at GBS</u>
- Prior projects
 - © CRYPTEX: fine-grained CRYPTocurrency datasets EXploration [GCASR'24]
 - | Slow Turtle BackTesting with CRYPTEX [Tech Report '25]
 - CryptoHeat: A Smart, Cost-Efficient Personal Heater Powered by

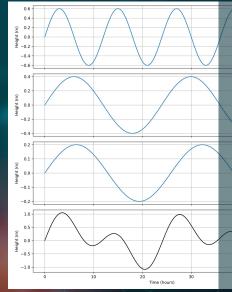
THE UNIVERSITY OF Blockchain Mining [GCASR'25]



https://lucasraicu.github.io

Problem Statement

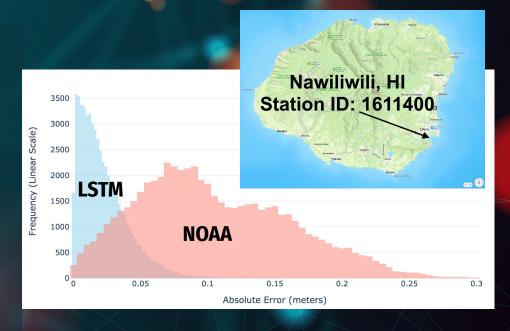

Coastal flood forecasting remains hampered by traditional models' inability to capture complex spatiotemporal dynamics, limiting lead time and accuracy.



State-of-the-art Solution Harmonic Analysis

Can predict water level decades into the future

- Stationarity and Linearity
 Assumptions (e.g.
 - long-term sea-level rise)
- Inflexibility under Rapid Environmental Change

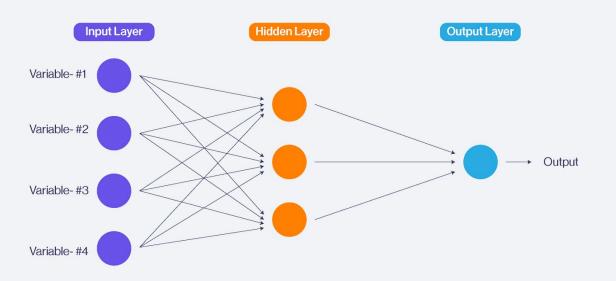

Our Approach

Temporal-spatial Water-level Data

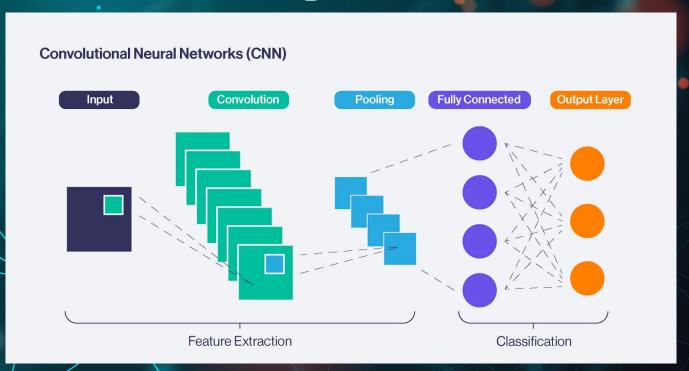
Artificial Intelligence

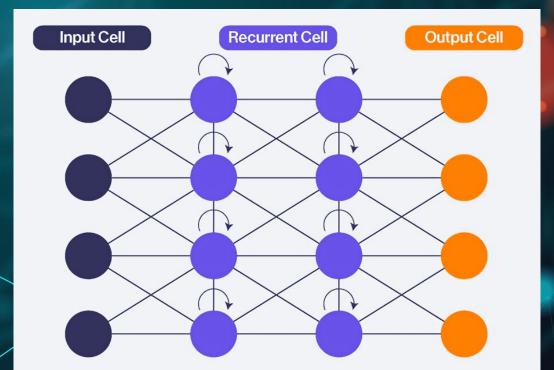
ļ

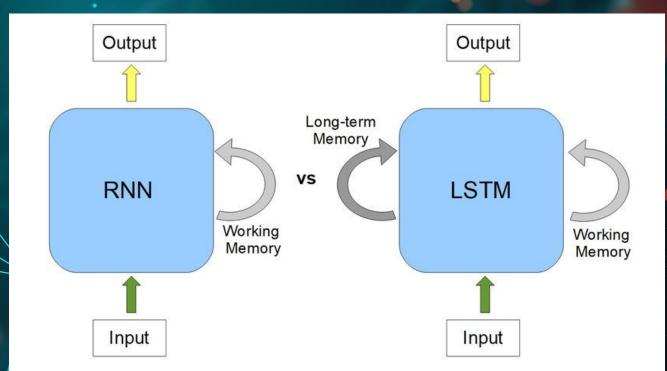
Accurate Future Trend Predictions



Machine Learning as an Option


Feed-Forward Neural Networks


Machine Learning as an Option (cont.)


Recurrent Neural Networks (RNN)

globus 🔼 labs

Simple RNN vs LSTM

NOAA Dataset

- Dataset size: 82 gigabytes
 - 217 coastal water level stations (w/ full Metadata)
 - Over 127 million data points (6-minute granularity)
 - Raw & predicted data samples
 - Focused on one station (Nawiliwili, HI Station ID: 1611400)

TidalMark Framework

- Sequential models to capture long-term-dependencies in water-levels
- Performed a single-shot walk-forward validation
 - 80% training data, 10% validation, 10% testing
- Params: seq_len, batch_size, learning_rate, hidden_size, num_layers
- Output sequence of 7 days (logs at 1, 3, 5, 7)
- Visualization
 - Absolute Error histogram
 - Train vs Validation Loss
 - Correlation Heatmap
 - Hyper-Parameter comparisons through Box, Scatter, and Violin Plots

Data Format

Stations Info (tsv)

```
~/Documents/summer-2025/fountain/data/processed/noaa/stations/stations.tsv
                                                                                          lat lng affiliations
                                                                                                                                established removed origyear
              greatlakes shefcode
                                                            timezonecorr
                                                                              id name
                                                                                                                    tideType
                                                                                                                                                                  missing_percent
     True
                                            -10 1611400 Nawiliwili 21.9544 -159.3561
                                                                                                                                         1991-02-16 00:00:00.0
                                                                                                                                                                  1.6903284477206767e-06
              False
     True
                                                                                                                                             1989-01-20 00:00:00.0
     True
              False
                                                                                                                                             2023-05-31 00:00:00.0
     True
              False
                      MOKH1
                                  HAST
                                           -10 1612480 Mokuoloe
                                                                     21,433056
                                                                                                                                         1989-01-21 00:00:00.0
              False
                      KLIH1
     True
                                           -10 1615680 Kahului, Kahului Harbor 20.895
```

- Data pre-processing
 - Filter (verify, station ID)
 - Sort (time)

Sorted & Filtered Station Data (.tsv) - Nawiliwili

time	va	lue	sign	na qu	uality	infer	red	f.	lat	roc	threshold	station	datum
2018	-01-01	00:0	00:00	0.273	0.00	02 v	0	0	0	0	1611400 m	llw	
2018	-01-01	00:0	6:00	0.278	0.00	03 v	0	0	0	0	1611400 m	llw	
2018	-01-01	00:1	2:00	0.277	0.00	03 v	0	0	0	0	1611400 m	llw	
2018	-01-01	00:1	8:00	0.276	0.00	06 v	0	0	0	0	1611400 m	llw	

Table of Contents

- Parameters (Seq Len vs Output Len)
- Models comparable to LSTMS
- Hyper-Parameter Sweep across Params and Model-bases
 - Similar performance and limited Parameter Variability
- Base LSTM large sweep to determine parameter correlations
- Best config to compare with multivariate approaches
 - Neighbor, NOAA, and Constituents / Workflow Diagram
- Challenges
 - o Too many open file handle, out of memory errors, long computational time
- Future Work ⇒ Dynamic Graph Neural Networks and River Predictions

Hyperparameter Search

LSTM Large Sweep – 120 configurations

- Seq_Len: [7, 14]
- BS: [32, 64, 128, 256, 512]
- LR: [1e-3, 1e-4, 1e-5]
- HS: [32, 64]
- Num_Layers: [1,2]

Many Models Sweep – 180 configurations

- Seq_Len: [7]
- BS: [32, 64, 128]
- LR: [1e-3, 5e-4, 1e-4]
- HS: [32, 64]
- Num_Layers: [1,2]
- Models: [LSTM, BILSTM, CONV-LSTM, GRU, ATTN]

Multivariate Experiments –

Input Dim: Primary Station +

- Neighbor
- NOAA
- 37 Harmonic Constituents

Hyperparameter Search #3

Hidden Size [32, 64]

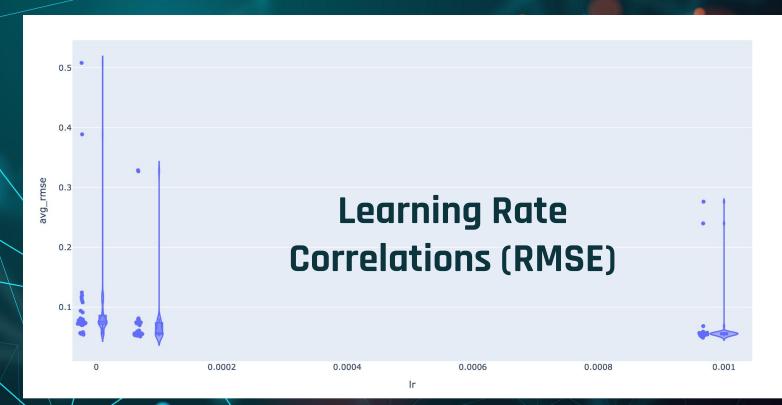
Models [LSTM]

Num Layers [1, 2]

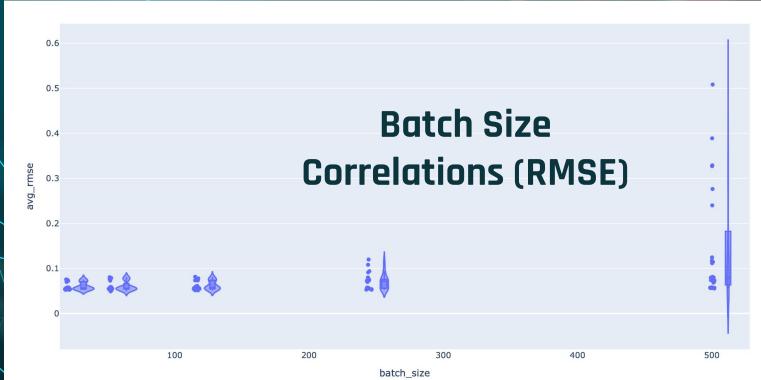
120

Learning Rate [1e-3, 1e-4, 1e-5]

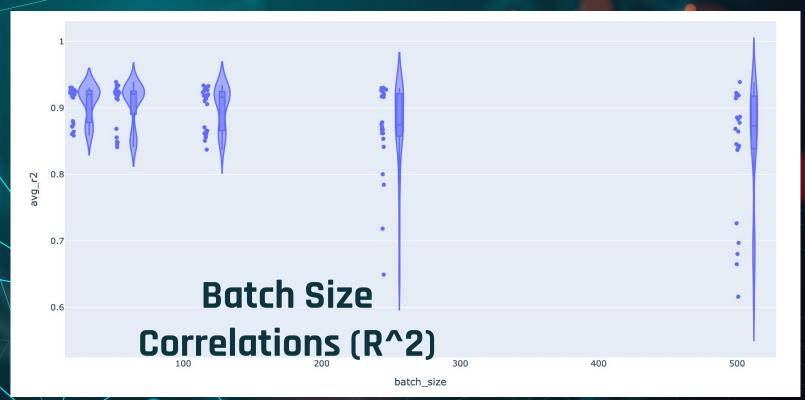
Sequence Length [7, 14]


Batch Size [32, 64, 128, 256, 512]

globus 🔼 labs

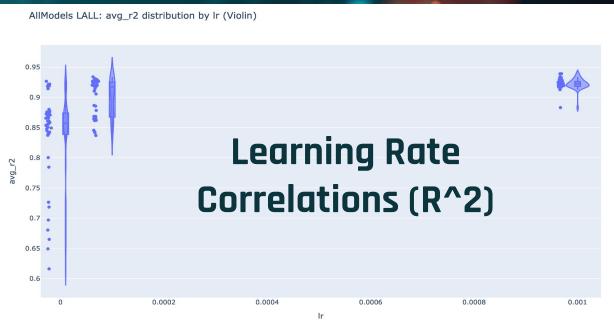


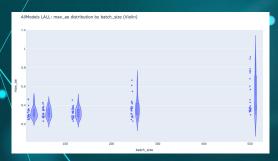
LSTM Large Sweep Results

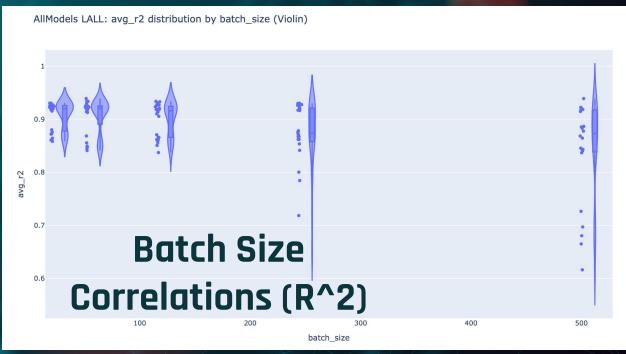


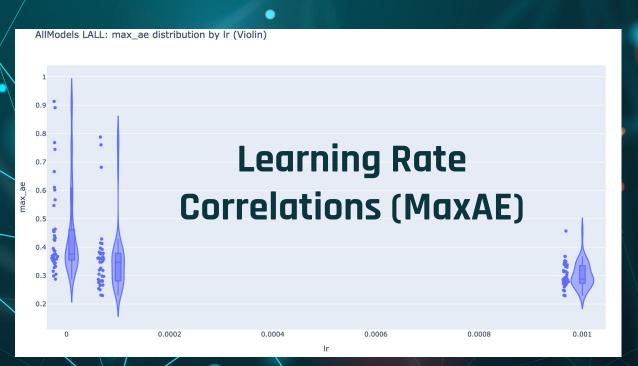
LSTM Large Sweep Results

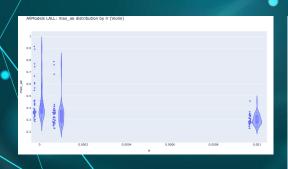


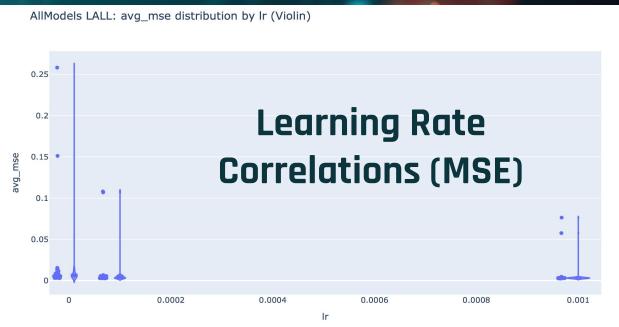


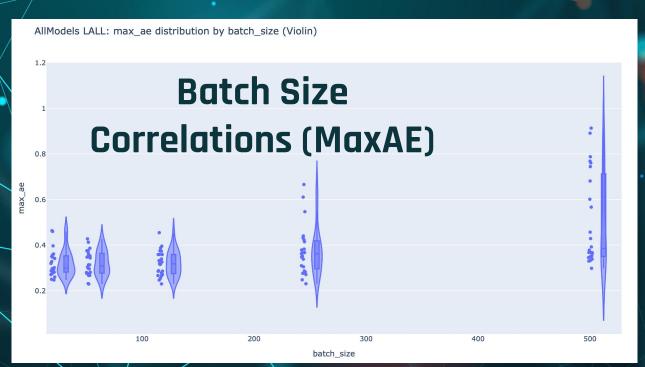


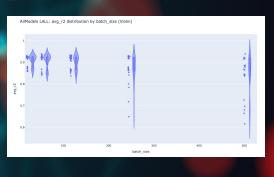


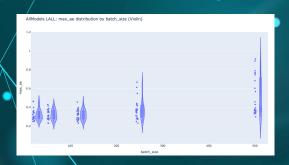


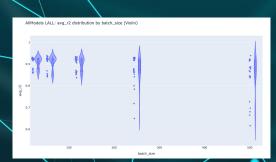


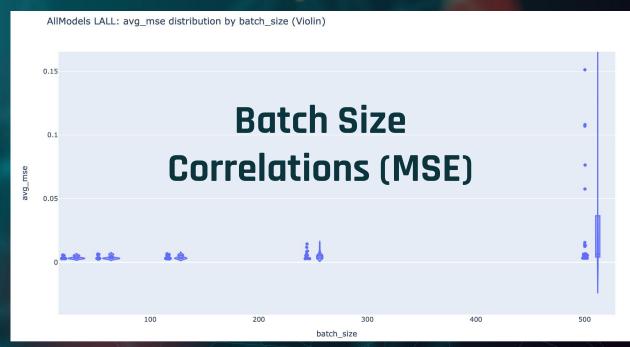


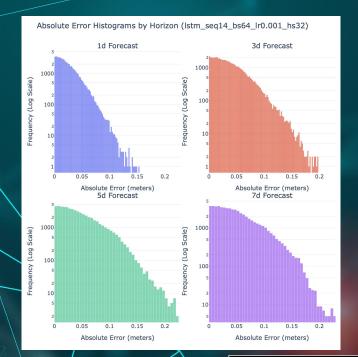


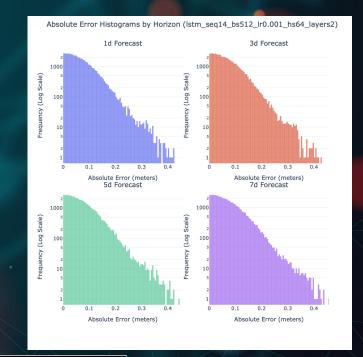




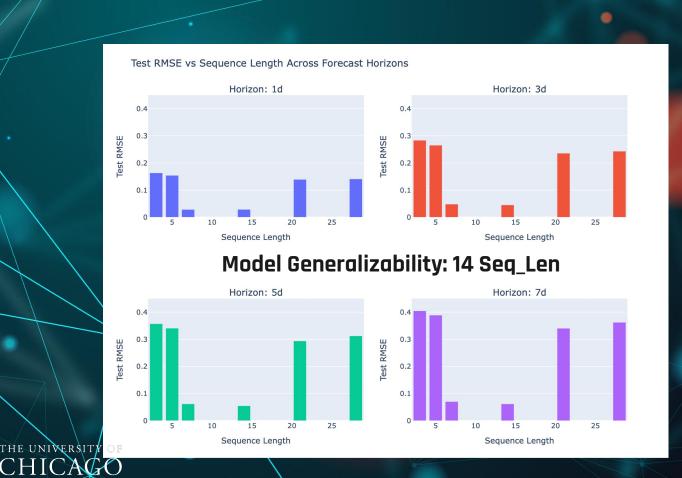








Best configurations (R^2)


	Model	R ²	MSE	MAE	MaxAE		
	LSTM_L1	0.939	0.002	0.038	0.229		
1	LSTM_L2	0.939	0.058	0.204	0.368		

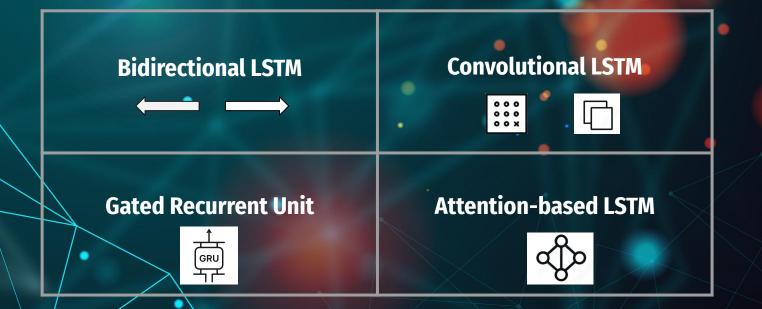
Hyperparameter Search

LSTM Large Sweep – 120 configurations

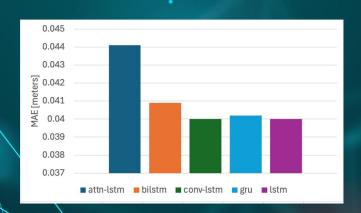
- Seq_Len: [7, 14]
- BS: [32, 64, 128, 256, 512]
- LR: [1e-3, 1e-4, 1e-5]
- HS: [32, 64]
- Num_Layers: [1,2]

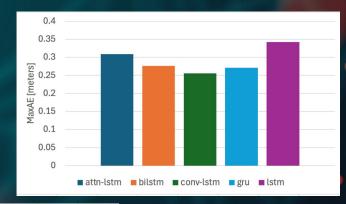
Many Models Sweep – 180 configurations

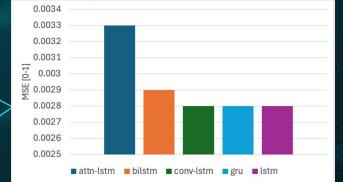
- Seq_Len: [7]
- BS: [32, 64, 128]
- LR: [1e-3, 5e-4, 1e-4]
- HS: [32, 64]
- Num_Layers: [1,2]
- Models: [LSTM, BILSTM,
 CONV-LSTM, GRU, ATTN]


Multivariate Experiments – Input Dim: Primary Station +

- Neighbor
- NOAA
- 37 Harmonic Constituents


Variations on LSTM Models





Many Models Sweep Results – Model vs Metrics

Many Models Sweep

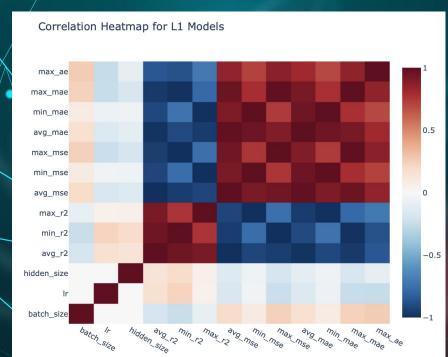
Hidden Size [32, 64]

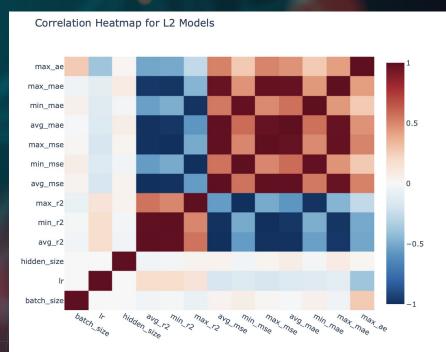
Models
[LSTM, BILSTM, Conv-LSTM, GRU, ATTN]

Num Layers [1, 2]

180

Learning Rate [1e-3, 5e-4, 1e-4]


Batch Size [32, 64, 128]


Sequence Length [7]

Many Models Sweep Results

Many Models Sweep Results (cont.)

		BEST	Model	R ²	MSE	MAE	MaxAE	seq	batch	lr	hidden	layers
on	1d	R ²	conv-lstm	0.980	0.001	0.022	0.133	7	64	0.0005	32	1
Horizon		MAE	conv-lstm	0.980	0.001	0.022	0.133	7	64	0.0005	32	1
Ή		MaxAE	lstm	0.978	0.001	0.023	0.116	7	32	0.001	32	2
on	3d	R ²	lstm	0.942	0.002	0.038	0.173	7	64	0.001	32	1
Horizon		MAE	conv-lstm	0.942	0.002	0.037	0.206	7	64	0.0005	32	1
Ή		MaxAE	bilstm	0.940	0.002	0.039	0.169	7	32	0.0005	32	1
on	5d	R ²	gru	0.910	0.004	0.047	0.251	7	64	0.0001	64	2
Horizon		MAE	lstm	0.910	0.004	0.047	0.227	7	128	0.0005	32	1
Ή		MaxAE	gru	0.903	0.004	0.049	0.219	7	32	0.001	32	1
on	7d	R ²	conv-lstm	0.891	0.004	0.053	0.251	7	64	0.001	32	1
Horizon		MAE	conv-lstm	0.891	0.004	0.053	0.251	7	64	0.001	32	1
Ĭ		MaxAE	gru	0.880	0.005	0.056	0.222	7	32	0.001	32	1

Many Models Sweep Results (cont.)

	Model	Layers	seq	batch	lr	hidden	layers	R ²	MSE	MAE	MaxAE
•	gru	2	7	64	0.0001	64	2	0.930	0.003	0.040	0.271
	conv-lstm	1	7	64	0.001	32	1	0.930	0.003	0.040	0.256
	lstm	1	7	128	0.0005	32	1	0.929	0.003	0.040	0.342
	gru	1	7	32	0.0005	64	1	0.928	0.003	0.041	0.286
1	bilstm	1	7	32	0.001	32	1	0.926	0.003	0.041	0.276
	conv-lstm	2	7	128	0.001	32	2	0.926	0.003	0.041	0.259
	lstm	2	7	64	0.0005	32	2	0.924	0.003	0.042	0.273
	bilstm	2	7	128	0.001	32	2	0.923	0.003	0.042	0.265
	attn-lstm	1	7	32	0.001	64	1	0.916	0.003	0.044	0.309

Hyperparameter Search

LSTM Large Sweep – 120 configurations

- Seq_Len: [7, 14]
- BS: [32, 64, 128, 256, 512]
- LR: [1e-3, 1e-4, 1e-5]
- HS: [32, 64]
- Num_Layers: [1,2]

Many Models Sweep – 180 configurations

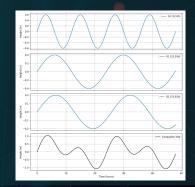
- Seq_Len: [7]
- BS: [32, 64, 128]
- LR: [1e-3, 5e-4, 1e-4]
- HS: [32, 64]
- Num_Layers: [1,2]
- Models: [LSTM, BILSTM, CONV-LSTM, GRU, ATTN]

Multivariate Experiments – Input Dim: Primary Station +

- Nearest Neighbor
- NOAA Predictions
- 37 Harmonic Constituents

Hyperparameter Search

LSTM Large Sweep – 120 configurations


- Seq_Len: [7, 14]
- BS: [32, 64, 128, 256, 512]
- \ LR. [1e-3, 1e-4, 1e-5]
- HS: [32, 64]
- Num_Layers: [1,2]

Many Models Sweep – 180 configurations

- Seq_Len: [7]
- BS: [32, 64, 128]
- LR: [1e-3, 5e-4, 1e-4]
- HS: [32, 64]
- Num_Layers: [1,2]
- Models: [LSTM, BILSTM, CONV-LSTM, GRU, ATTN]

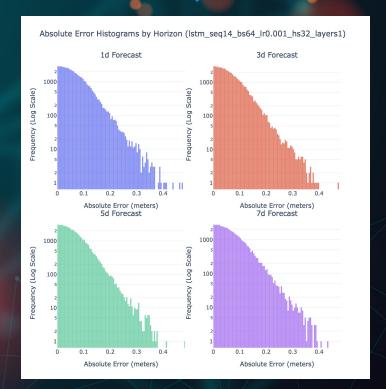
Multivariate Experiments – Input Dim: Primary Station +

- Nearest Neighbor
- NOAA Predictions
- 37 Harmonic Constituents

Other Approaches

- Current Univariate model
 - Input dimension: main water-level
 - Output dimension: main water-level
- Multivariate models
 - Possible Input Dims
 - Nearest neighbor + main water-level
 - NOAA predictions + main water-level
 - 37 Harmonic constituents + main water-level
 - Output Dim: main water-level

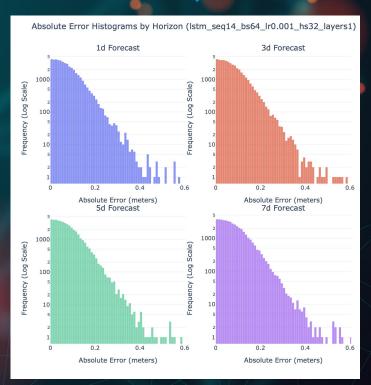



Preliminary (1 Layer) Results

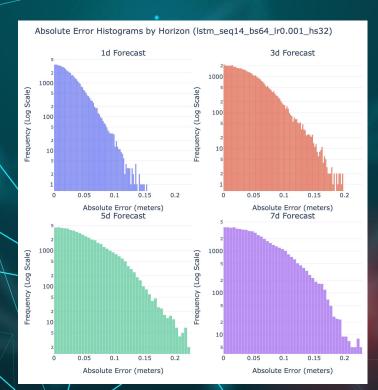
globus 🔼 labs

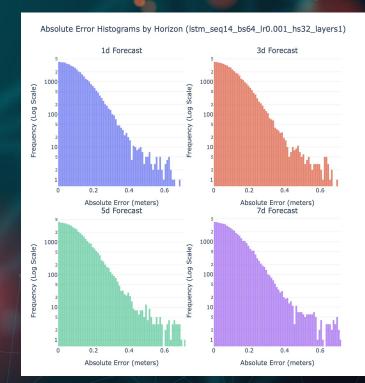
Univariate vs Nearest Neighbor



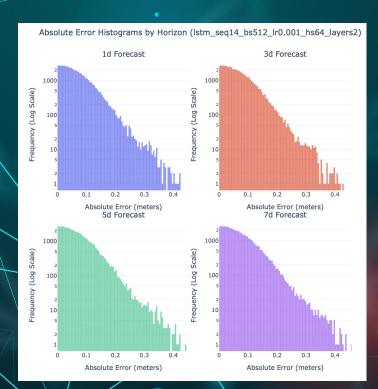


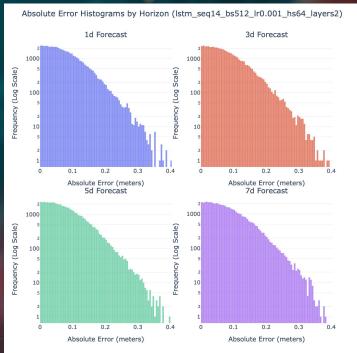
Univariate vs NOAA predictions





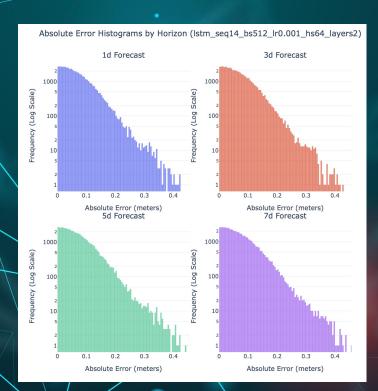
Univariate vs Constituents

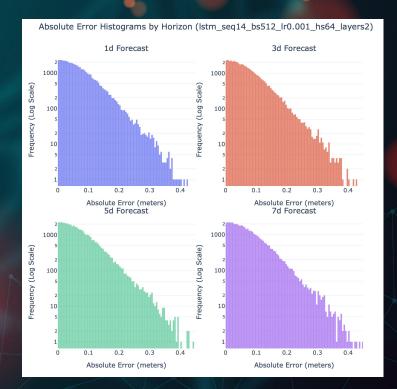



Preliminary (2 Layers) Results

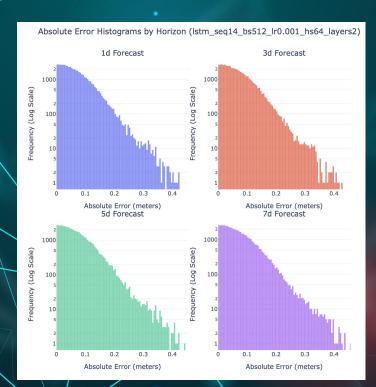
globus 🔼 labs

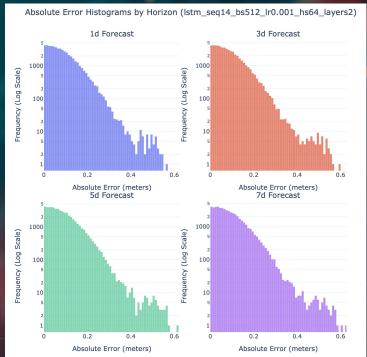
Univariate vs Nearest Neighbor





Univariate vs NOAA predictions

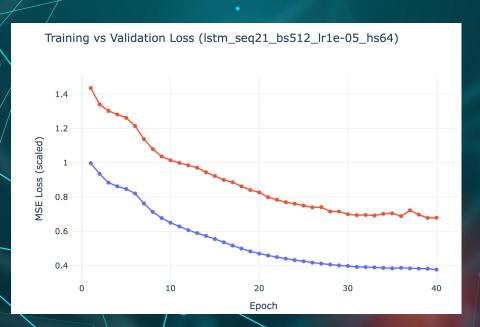


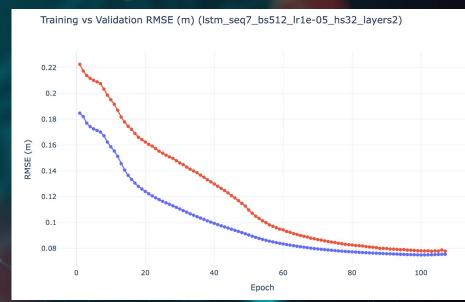


Univariate vs Constituents

Other Approaches Summary

- Multivariate models
 - Decreased performance
 - Takes longer to compute
- Might need to do hyperparameter sweep for multivariate models


Big Takeaways Summary

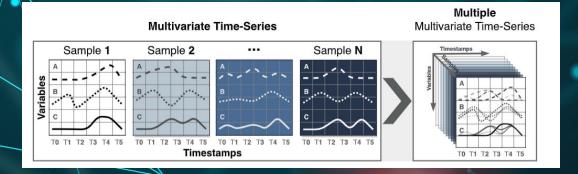

- Average r² when ...
- Learning rate is **VERY IMPORTANT** ⇒ 0.001
- Epoch limit must be set high \Rightarrow 200
- Must have patience ⇒ 5
- Num layers \Rightarrow 1 or 2
- Correlation between input sequence length and r^2
- Different variations of LSTM models perform similarly
- Adding more data (neighbors, NOAA) does not improve performance and has more computational overheads

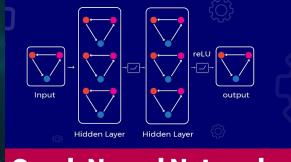
Epoch Success!

Challenges

- Too many open file handles & out of memory errors
 - Large hyper-parameter combinations
 - Persistent workers
- Long computation time
- Fingerprint SSH Authentication across instances

Solutions


- ulimit, /etc/security/limits.conf
- With context in Python for file open/close
- Sharing_strategy("file_system") across processors to prevent overuse of file handles
- Expandable Segments to allocate more memory for computing
- Multiple Instances
- Creation of new floating IP



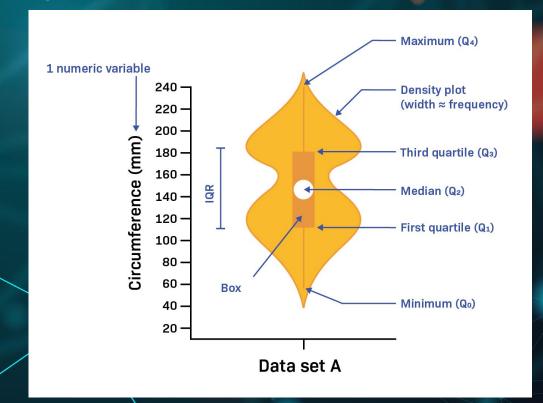
Future Work

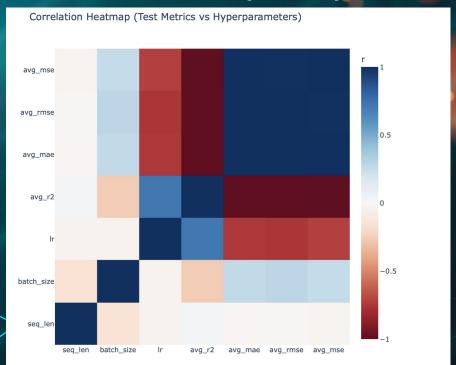
Graph Neural Networks

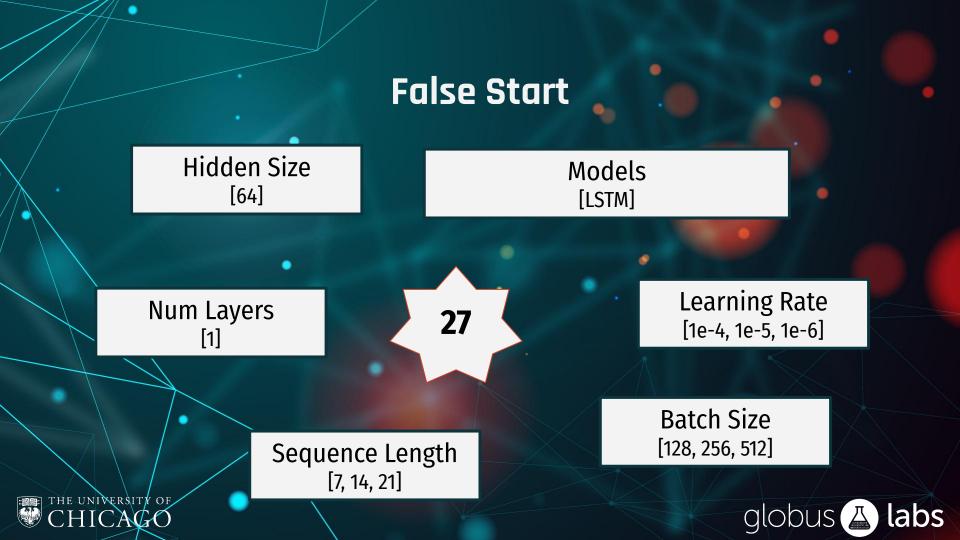
globus 🔼 labs

Testbed

- Preliminary Testbed
 - Hardware: MacOS, 6-core Intel CPU 2.6GHz, 16GB RAM
 - Time to train LSTM with 500K 6-min samples for two epochs: 2hrs
- Chameleon (three instances)
 - Intel 24-core CPU 2.6GHz, 192GB RAM, 400GB SSD
 - o Nvidia 4608-core RTX 6000 GPU, 24GB RAM
 - Time to train LSTM with 500K 6-min samples for 200 epochs: 2hrs (100X speedup)

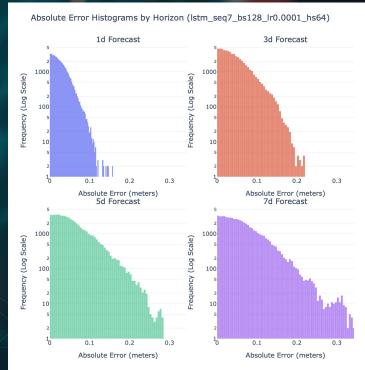



Violin Plots


globus 🔼 labs

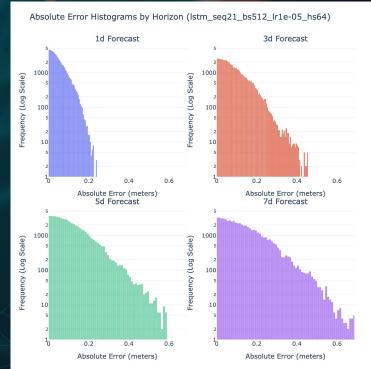
False Start Results (cont.)

False Start Results


mo	del	seq	batch	lr	hidden	r2	mae	rmse	mse
Ist	tm 7 128 0.0001		64	0.913	0.044	0.056	0.003		
Is	tm	14	256	0.0001	64	0.879	0.051	0.066	0.005
Is	tm	7	256	0.0001	64	0.875	0.052	0.067	0.005
Ist	tm	21	256	0.0001	64	0.866	0.054	0.069	0.005
Ist	tm	14	128	0.0001	64	0.862	0.055	0.070	0.005
Is	tm	21	128	0.0001	64	0.859	0.055	0.071	0.006
	:			•••					
Is	tm	14	128	1.00E-06	64	0.505	0.105	0.130	0.020
Is	tm	7	256	1.00E-06	64	0.456	0.112	0.138	0.022
Ist	tm	14	256	1.00E-06	64	0.426	0.114	0.141	0.023
Ist	tm	21	256	1.00E-06	64	0.422	0.114	0.142	0.023
Ist	tm	7	512	1.00E-06	64	0.336	0.125	0.157	0.026
Ist	tm	14	512	1.00E-06	64	0.299	0.131	0.164	0.028

False Start Results (cont.)





False Start Results (cont.)

False Start: What did we learn?

- Average r^2 increases when ...
- Epoch limit
- Patience early stopping period
- Num layers
- Correlation between input sequence length and r^2
- Different models?
- Multiple input dimensions?

