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Accurate forecasting of water levels is essential for tracking climate change and flood mitigation. Tradition-
ally, predictions have been based on harmonic analysis and sensor networks maintained by the National
Oceanographic and Atmospheric Administration. However, these methods struggle with increasingly erratic
sea-level dynamics. To more accurately capture complex temporal dependencies, TidalMark leverages deep
learning models, specifically Long-Short-Term Memory networks. These models, due to their ability to use
gates to selectively retain or forget information over time, are able to learn long-range patterns in sequential
time-series data, making them perfect to use for water-level predictions. Through extensive hyperparameter
sweeps and comparisons across model variants, we have evaluated tradeoffs in accuracy, generalization
(for time and architecture), and scalability. Our results show that properly tuned machine learning models
consistently outperform the scientific-standard harmonic approaches between 2.1X and 4.7X (between 7D to
1D predictions) with the goal towards achieving adaptive, scalable, and accurate forecasting of coastal water
levels. Our project moves toward achieving adaptive, scalable, and accurate forecasting of coastal water levels.

1 Introduction

Coastal communities face increasing threats from flooding, sea-level rise, and extreme weather. [7]
Since the 1800s, harmonic analysis has been used to predict water levels by decomposing tides into
cyclical components [1, 5, 8]. The National Oceanographic and Atmospheric Administration (NOAA)
[4] maintains hundreds of sensors measuring coastal water levels, and has adopted harmonic
analysis to predict future water levels. While effective under stable conditions, it assumes linearity
and stationarity (long-term sea-level rise), limiting accuracy under rapid environmental change.
Figure 3 shows a major weather system over the course of several days that produced flooding
water levels (red line) while both NOAA predictions and Forecast Guidance estimated water levels
to be well in normal ranges.

Harmonic analysis decomposes the water-level signal into a fixed set of sinusoidal constituents,
each with constant amplitude and phase (see Figure 2b). In reality, coastal systems exhibit non-
stationary behavior (e.g., seasonal shifts, long-term sea-level rise) and nonlinear interactions among
constituents (e.g., overtides, compound tides), which harmonic analysis cannot adapt to dynamically.
By design, harmonic analysis captures only astronomic (gravitational) drivers of tides (see Figure 2a).
It cannot account for wind, atmospheric pressure changes, or storms. As climate change alters
baseline sea levels and potentially the resonance characteristics of estuaries or bays, the fixed-
parameter nature of harmonic analysis means constituents estimated from historical data may
become increasingly unsuitable for future predictions.

Many modern approaches such as Long Short-Term Memory (LSTM) based models learn from
both periodic and aperiodic patterns, adapt to changing dynamics, and fuse spatial context in ways
that harmonic analysis alone cannot [2]. LSTMs are designed to retain context over long sequences
by using memory cells and gating mechanisms (input, forget, and output gates). While LSTM also
features repetitive modules like traditional RNNs, LSTM incorporates four interacting layers that
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Fig. 1. NOAA’s predictions during non-periodic events
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Fig. 2. Gravitational Pull and Harmonic Analysis

communicate internally. This multi-layered design allows the model to retain complex long-term
dependencies.

We propose TidalMark, a system that applies LSTM models to improve forecast lead times and
adaptability in coastal water-level prediction. This research work’s main contribution is that it
identified Machine Learning models (LSTM) and its configuration parameters that can outperform
prediction accuracy of traditional harmonic analysis between 2.1X and 4.7X (between 7D to 1D
predictions). Figure 3 shows the histogram of all predictions using the LSTM compared to NOAA’s
predictions, showing the error size in meters.
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Fig. 3. LSTM vs NOAA predictions at the Nawiliwili station, HI

2 Proposed Work

We implemented our LSTM models using PyTorch using the nn.LSTM module. We used sequential
models to capture long-term-dependencies in water-levels. We performed a single-shot walk-
forward validation. We split up our training data, validation data, and testing data in traditional
80:10:10 split. We trained models with MSE loss and early stopping based on validation loss.

The model’s behavior is strongly influenced by its hyperparameters:

We

Sequence length: controls the input time window. Longer sequences (e.g., 14) allow the
model to learn long-term dependencies but require more memory and may introduce noise.
Batch size: impacts generalization and training time. Smaller batches (32-64) often lead
to better generalization but increase training time. Larger batches (256-512) can converge
faster but may overfit.

Learning rate: governs how quickly the model adapts during training. We found 1073
offered the best tradeoff between convergence speed and stability, aligning with prior
hydrological studies [3].

Hidden size: affects representational capacity. Larger hidden states (64) increase expres-
siveness but may cause overfitting if not regularized.

Number of layers: increases abstraction depth. Our experiments showed that 2 layers
offered marginal gains over 1, consistent with diminishing returns seen in prior literature

[3].

used a number of visualization techniques to evaluate the trained models, such as absolute

error histograms, train vs validation loss, correlation heatmap, and hyper-parameter comparisons
through Box, Scatter, as well as Violin Plots.

2.1 Data & Preprocessing

Our primary dataset comes from NOAA’s National Water level Observation Network (NWLON)
system, spanning 217 stations (see Figure 4b) and over 127 million measurements, each taken
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at six-minute intervals. The full dataset totals over 82 GB. Our work focuses on the station in
Nawiliwili, HI (Station ID: 1611400, see Figure 4a) due to its completeness and coastal variability.
Before feeding the data into our neural networks, we undertake a rigorous preprocessing routine:
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(a) NOAA’s Nawiliwili station

(b) U.S. Map of Stations

Fig. 4. Target station and dataset coverage

first, we filter the raw TSV files to retain only validated records for the target station. Next, we
sort all entries chronologically to preserve the temporal sequence. Finally, we partition the cleaned
series by station. Figure 5 shows the first four entries in the final dataset.

time value sigma quality inferred flat roc threshold station datum
018-01-01 00:00:00 0.273 ©0.002 v © © © 0 1611400 mllw

2018-01-01 00:06:00 0.278 ©0.003 v © © © 0 1611400 mllw

2018-01-01 00:12:00 0.277 ©0.003 v @ © 0 0 1611400 mllw

2018-01-01 00:18:00 0.276 ©0.006 v © © 0 0 1611400 mllw

Fig. 5. Sample data

2.2 Modeling Framework

We developed a modular pipeline in PyTorch for training and evaluating water-level forecasting
models. Each model receives a fixed-length window of prior water levels as input and predicts
future water levels at multiple time horizons (1, 3, 5, and 7 days). Input features are normalized per
sequence using standard scaling.

To understand how architectural design and input dimensionality influence performance, we
explored three major experiments.
(1) Univariate Hyperparameter Sweep

We evaluated 120 configurations of a standard LSTM model, varying five key hyperparameters.
Table 1 summarizes the grid search space. Each model was trained with mean squared error (MSE)
loss and early stopping based on validation RMSE.
(2) Model Architecture Comparison

To assess the effect of architecture choice, we fixed the best LSTM configuration and compared
it against other recurrent models across 180 trials. Table 2 lists the architectures and configuration
ranges. This experiment evaluated whether added architectural complexity led to meaningful gains
in forecast accuracy or generalization.
(3) Multivariate Input Extension
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Table 1. Hyperparameter grid for univariate LSTM sweep.

Parameter

Values Tested

Sequence Length
Batch Size
Learning Rate
Hidden Size
Number of Layers

7,14

32, 64, 128, 256, 512
1x1073, 1x107%, 1x107°
32, 64

1,2

Table 2. Recurrent architectures tested in model comparison.

Model Type Variants Tested  Parameter Ranges

LSTM Vanilla, BiILSTM Hidden sizes: 32, 64

Conv-LSTM 1D convolution Learning rates: 1x1072, 5x107%, 1x10™*
GRU Single, stacked Layers: 1, 2

Attention-LSTM  Scaled dot-product

Batch sizes: 32, 64, 128

We extended the LSTM input space to include additional sources of temporal information. This
aimed to determine whether richer inputs improve model performance or simply increase the risk

of overfitting.

e Neighboring station water levels
e NOAA tidal predictions

e All 37 harmonic constituents from Nawiliwili

3 Performance Evaluation

Learning rate was the dominant factor. Models trained with 1x 10~3 converged fastest and achieved
the highest R?, outperforming lower values by a wide margin (see Figure 6a). Batch size and number
of layers had modest effects. Smaller batches (32-64) improved stability and generalization. One or
two layers offered comparable results (see Figure 6b).

Learning Rate
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(a) Learning rate vs RMSE correlation

(b) Batch size vs RMSE correlation

Fig. 6. Learning rate and batch size

Longer sequences (14 vs. 7) slightly improved accuracy but at a significant training time increase.

Models tuned for one seq length also did not
Figure 7a and Figure 7b).

generalize well for other sequence lengths (see
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Fig. 7. Model Generalizability

3.1 Architecture Comparisons

Despite their theoretical advantages, BILSTM, GRU, and Attention-based models did not outperform

the tuned vanilla LSTM.
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Fig. 8. Architecture comparison

As shown in the figures above, variance was high, but performance distributions largely over-
lapped. This suggests that careful tuning matters more than exotic architecture selection.

3.2 Multivariate Modeling

Contrary to expectations, adding auxiliary inputs hurt performance in most configurations. Mul-
tivariate models tended to overfit, especially when trained without retuning hyperparameters.
Figure shows how absolute error (maximum and distribution) increases for neighbor, NOAA, and
constituent-based models compared to univariate LSTM.

3.3 Testbed Performance

To gauge real-world viability, we benchmarked training speed on two platforms. We trained models
on both a local MacBook Pro (6-core Central Processing Unit, 16 GB RAM) and the Chameleon
Cloud platform (24-core CPU, 192 GB RAM, NVIDIA RTX 6000 Graphics Processing Unit). On CPU,
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Fig. 9. Absolute error histograms (log scale) across 7d horizons for various input types

2 epochs on 500,000 samples took 2 hours. On GPU, we trained 200 epochs in the same time—a

100= speedup.

This gap highlights that GPU acceleration is essential for large-scale hyperparameter sweeps

and production deployment.

4 Related Work

Harmonic Analysis remains the industry standard for long-term sea-level forecasting. However,
LSTM-based forecasting has seen success in hydrological studies [3] and Earth system science more
broadly [6]. Dynamic Graph Neural Networks (DGNNs) have also been recently been proposed for

spatiotemporal learning [9].
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5 Conclusion and Future Work

TidalMark demonstrates that well-tuned LSTM architectures can outperform traditional harmonic-
based forecasts in dynamic environments. Our results show that properly tuned machine learning
models consistently outperform the scientific-standard harmonic approaches between 2.1X and 4.7X
(between 7D to 1D predictions) with the goal towards achieving adaptive, scalable, and accurate
forecasting of coastal water levels. Figure 3 shows the histogram of all predictions using the LSTM
compared to NOAA’s predictions, showing the error size in meters. These findings align with
broader trends in Earth system modeling, where deep learning methods are increasingly surpassing
classical statistical and physical models in accuracy and adaptability [6].

With next steps in spatial modeling and hyperparameter automation, TidalMark moves us closer
to more adaptive and scalable water-level forecasting systems. Building on these findings, we plan
to extend TidalMark into a full spatiotemporal Graph Neural Network framework, where each
station is a node and edges represent geophysical relationships. This will allow the model to reason
across space, not just time. We also aim to apply it to inland river systems. Additionally, we aim
to explore automated hyperparameter optimization using Bayesian search. Finally, we plan to
streamline the framework for production use, including edge deployment for early flood warnings.
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